Symmetric Pascal matrices modulo p
نویسندگان
چکیده
T = 1 1 1 1 2 1 1 3 3 1 .. . . . = exp 0 1 0 0 2 0 0 3 0 . . . with coefficients ti,j = (i j ) . This shows that det(P (n)) = 1 and that P (n) is positive definite for all n ∈ N. It implies furthermore that the characteristic polynomial det(tI(n)−P (n)) = ∑ k=0 αkt k (where I(n) denotes the identity matrix of order n) of P (n) has only positive real roots. The inverse P (n)−1 of P (n) is given by
منابع مشابه
Introduction to admissible representations of p-adic groups
The motivation for the construction is classical. The group GL2(R) acts on the space of all symmetric 2 × 2 real matrices: X : S 7−→ XS X , and preserves the open cone C of positive definite matrices. The quotient PGL2(R) therefore acts on the space P(C), which is the quotient of such matrices modulo positive scalars. The isotropy subgroup of I is the imageO(2) = O(2)/{±I} inPGL2(R), so that P(...
متن کاملThe Bruhat - Tits tree of SL ( 2 )
The groupGL2(R) acts on the space of all symmetric 2× 2 real matrices: X : S 7−→ XS X . It preserves the open cone C of positive definite matrices. The quotient PGL2(R) = GL2(R)/{scalars} therefore acts on the space P(C), which is the quotient of suchmatrices modulo positive scalars. The isotropy subgroup of I is the image O(2) in PGL2(R) of O(2), so that P(C) may be identified with PGL2(R)/O(2...
متن کاملThe Spectrum of Heavy Tailed Random Matrices
Take XN to be a symmetric matrix with real independent (modulo the symmetry constraint) equidistributed entries with law P and denote (λ1, · · · , λN) its eigenvalues. Then, Wigner [14] has shown that, if ∫ xdP (x) is finite, N−1 ∑N i=1 δλi/ √ N converges in expectation towards the semi-circle distribution. In this paper, we consider the case where P has a heavy tail and belong to the domain of...
متن کاملTHE INVERSE OF THE PASCAL LOWER TRIANGULAR MATRIX MODULO p
Let L(n)p be the Pascal lower triangular matrix with coefficients `i j ́ (mod p), 0 ≤ i, j < n. In this paper, we found the inverse of L(n)p modulo p. In fact, we generalize a result due to David Callan [4].
متن کاملCirculant matrices and affine equivalence of monomial rotation symmetric Boolean functions
The goal of this paper is two-fold. We first focus on the problem of deciding whether two monomial rotation symmetric (MRS) Boolean functions are affine equivalent via a permutation. Using a correspondence between such functions and circulant matrices, we give a simple necessary and sufficient condition. We connect this problem with the well known Ádám’s conjecture from graph theory. As applica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eur. J. Comb.
دوره 25 شماره
صفحات -
تاریخ انتشار 2004